首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37187篇
  免费   1164篇
  国内免费   1005篇
测绘学   967篇
大气科学   2912篇
地球物理   7672篇
地质学   13677篇
海洋学   3362篇
天文学   8049篇
综合类   276篇
自然地理   2441篇
  2022年   305篇
  2021年   465篇
  2020年   448篇
  2019年   498篇
  2018年   933篇
  2017年   891篇
  2016年   1069篇
  2015年   733篇
  2014年   1044篇
  2013年   1888篇
  2012年   1354篇
  2011年   1790篇
  2010年   1568篇
  2009年   2039篇
  2008年   1711篇
  2007年   1778篇
  2006年   1703篇
  2005年   1228篇
  2004年   1144篇
  2003年   1038篇
  2002年   1002篇
  2001年   853篇
  2000年   828篇
  1999年   674篇
  1998年   718篇
  1997年   686篇
  1996年   536篇
  1995年   562篇
  1994年   480篇
  1993年   415篇
  1992年   416篇
  1991年   385篇
  1990年   448篇
  1989年   365篇
  1988年   342篇
  1987年   428篇
  1986年   342篇
  1985年   425篇
  1984年   522篇
  1983年   446篇
  1982年   444篇
  1981年   394篇
  1980年   415篇
  1979年   352篇
  1978年   341篇
  1977年   338篇
  1976年   307篇
  1975年   295篇
  1974年   308篇
  1973年   339篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
On large, intensively engineered rivers like the Lower Missouri, the template of the physical habitat is determined by the nearly independent interaction of channel form and flow regime. We evaluated the interaction between flow and form by modeling four combinations of modern and historical channel form and modern and historical flow regimes. The analysis used shallow, slow water (shallow-water habitat, SWH, defined as depths between 0 and 1.5 m, and current velocities between 0 and 0.75 m/s) as an indicator of habitat that has been lost on many intensively engineered rivers and one that is thought to be especially important in rearing of young fishes. Two-dimensional hydrodynamic models for modern and historical channels of the Lower Missouri River at Hermann, Missouri, indicate substantial differences between the two channels in total availability and spatial characteristics of SWH. In the modern channel, SWH is maximized at extremely low flows and in overbank flows, whereas the historical channel had substantially more SWH at all discharges and SWH increased with increasing discharge. The historical channel form produced 3–7 times the SWH area of the modern channel regardless of flow regime. The effect of flow regime is evident in increased within-year SWH variability with the natural flow regime, including significant seasonal peaks of SWH associated with spring flooding. Comparison with other reaches along the Lower Missouri River indicates that a) channel form is the dominant control of the availability of habitat even in reaches where the hydrograph is more intensively altered, and b) rehabilitation projects that move toward the historical condition can be successful in increasing topographic diversity and thereby decreasing sensitivity of the availability of habitat to flow regime. The relative efficacy of managing flow and form in creating SWH is useful information toward achieving socially acceptable rehabilitation of the ecosystem in large river systems.  相似文献   
992.
Longitudinal (linear) sand dunes of the Simpson and Strzelecki dunefields in eastern central Australia present a paradox. Low levels of activity today stand in contrast to luminescence dating which has repeatedly shown deep deposits of sand on dune crests dating to within the late Holocene. In order to investigate the nature of dune activity in the Simpson–Strzelecki dunefield, vegetation and sand mobility were investigated by detailed vegetation survey and measurement of rippled area and loose sand depth of dunes at three sites along a climatic gradient. The response of both vegetation and sand movement to inter-annual climate variability was examined by repeat surveys of two sites in drought and non-drought conditions. Projected plant cover and plant + crust cover were found to have inverse linear relationships with rippled area and the area of deep loose sand. No relationship was found between these measures of sand movement and the plant frontal area index. A negative exponential relationship between equivalent mobile sand depth on dune surfaces and both vascular plant cover and vascular + crust cover was also found. There is no simple threshold of vegetation cover below which sand transport begins. Dunes with low perennial plant cover may form small dunes with slip faces leading to a positive feedback inhibiting ephemeral plant growth in wet years and accelerating sand transport rates. The linear dunefields are largely within the zone in which plant cover is sufficient to enforce low sand transport rates, and in which there is a strong response of vegetation and sand transport to inter-annual variation in rainfall. Both ephemeral plants (mostly forbs) and crust were found to respond rapidly to large (> 20 mm/month) rainfall events. On millennial time-scales, the level of dune activity is controlled by vegetation cover and probably not by fluctuations of wind strength. Land use or extreme, decadal time-scale, drought may destabilise dunes by removing perennial plant cover, accelerating wind erosion.  相似文献   
993.
The barrier islands of Inhaca and Bazaruto are related to the extensive coastal dune system of the Mozambican coastal plain, south-east Africa. Optically stimulated luminescence (OSL) dating of key stratigraphic units indicates that accretion of sediment within these systems is episodic. Both islands appear to have been initiated as spits extending from structural offsets in the coastline. Superposition of significant quantities of sediment upon these spits during subsequent sea-level highstands formed the core of the islands, which were anchored and protected by beachrock and aeolianite formation. At least two distinct dune-building phases occurred during Marine Oxygen Isotope Stage (MIS) 5, tentatively attributed to marine transgressions during sub-stages 5e and 5c. Although some localized reactivation of dune surfaces occurred prior to the Holocene, large quantities of sediment were not deposited on either island during the low sea-levels associated with MIS 2. Significant dune-building and sediment reworking occurred immediately prior to and during the Holocene, though it is not clear whether these processes were continuous or episodic. Significant erosion of the eastern shoreline of Bazaruto suggests that it is far less stable than Inhaca and may suffer further large-scale erosion. A model is presented for the formation of barrier islands along the Mozambican coastal plain.  相似文献   
994.
By studying landscape form and patterns, we can study processes at multiple scales and determine how collectively those processes inform us about function(s). Integrating landscape ecology from a biogeographical perspective with geographic information science (GIScience) practices offers new ways to study how landscapes change over time and space, including how they can be measured, analyzed, and modeled for management needs. This article presents methodologies and selected results of analyzing spatial patterns from field data across multiple scales by examining standing dead tree (snag) processes across wildfire‐disturbed landscapes in Arizona. Our primary motivation was to illustrate a particular type of work benefiting from the coalescing of landscape ecology and GIScience, functioning at the methodological and practical overlap of these two contributing fields. Our management goals were to (1) describe spatial patterns and characteristics of snags in pairs of burned and unburned ponderosa pine forests of Arizona in four recent (within the past ten years) wildfires, (2) document bird response to wildfires by combining landscape ecology and GIScience methods, and (3) link these patterns to snag monitoring plots and cavity‐nesting bird use to predict the probability of snag use by birds and cavity nesters based on snag characteristics (snag use model). The methods and results demonstrate how integration of landscape ecology with both GIS and GIScience improves the ways to study landscapes and land management issues, in this case offering guidelines for retention of snags that provide habitat for wildlife.  相似文献   
995.
We present 137Cs profiles for three low lying coastal lagoons in Southwest England that show a decline in activity with sediment depth. 137Cs inventories are lower than expected by comparison with local reference inventories despite the fact that sampling was undertaken in the deep-water zone of each lake where sediment and 137Cs focusing would be expected. At all three locations, lake sediment 7Be and unsupported 210Pb (210Pbun) inventories are not significantly lower than the local reference inventory. 137Cs inventories in the study cores range from 38 to 95% of local reference inventories. The standing water level and mud: water interface at two sites are below maximum tide level and, at all three sites, salinity increases significantly in the water columns between low and high tide and in the pore waters of the underlying sediments. We suggest that the difference in hydrostatic pressure between sea level and standing water levels in the lagoons forces salt water up through the sediment column and that monovalent cations (especially Na+ and K+) replace 137Cs on exchange sites leading to the upward migration and loss of 137Cs. Rising sea levels may therefore contribute to remobilisation and release of 137Cs to the aquatic environment from the sediments of coastal lagoons.  相似文献   
996.
Stable isotopic compositions and concentrations of total sedimentary sulphur (S) were determined in cores from 6 lakes in the acid-sensitive Muskoka-Haliburton region of south-central Ontario. The isotopic composition of S in deep sediment (> ~ 20 cm) was approximately constant in all lakes, and indicated a pre-industrial δ 34S value between +4.0 and +5.3‰, which is similar to current bulk deposition. Similarly, total S concentrations in deep sediment were relatively low (1.9–5 mg S g−1 dwt) and approximately constant with depth within cores. All lakes exhibited up-core increases in total S and decreases in δ 34S at a depth corresponding to the beginning of industrialization in the Great Lakes region ( ~ 1900), resulting in a generally reciprocal depth pattern between total S concentration and δ 34S ratios. While initial shifts in total S and δ 34S were likely due to enhanced SO4 reduction of newly available anthropogenic SO4, both the magnitude and pattern of up-core S enrichment and shifts in δ 34S varied greatly among lakes, and did not match changes in S deposition post 1900. Differences between lakes in total S and δ 34S were not related to any single hydrologic (e.g., residence time) or physical (e.g., catchment-area-to-lake area ratio) lake characteristic. This work indicates that sediment cores do not provide consistent records of changes in post-industrial S deposition in this region, likely due to redox-related mobility of S in upper sediment.  相似文献   
997.
998.
999.
1000.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号